

1

MaintControl

Specification
Document

2

: Students' names

Nave Shimoni, Lior Fridman, Reuven Bar, Matan Avital

:oderators' namesM

Tal Gumai, Mark Israel

3

Table of contents:

Project's Goal & system decription………………………………………………………………….page 4

Screens……….…………………………………………………………………………………………………….page 5

Server side………………………………………………………………………………………………………..page 6

Server architecture..………………………………………………………………………………………….page 7

Screen details………………………………………………………………………………………………page 8-13

Methodologies……………………………………………………………………………………………page 14-15

Platforms…….…………………………………………………………………………………………………….page 16

Database structure & flowchart.………………………………………………………………….page 17-19

4

1. Project's Goal:

The goal of the project is to create a generic WEB-based system, which

provides a solution to the problem of supervision and control of the

maintenance carried out by different companies in different locations in the

country, thus optimizing the daily work of the maintenance workers.

2. System Description:

Software application:

Will be developed as a responsive Web application based on REACT, both for

computers and mobile phones .

Data reception/Database:

The method of receiving the data will be carried out on a SQL relational

database based on Postgres. These tables will store the parameters that will

be reflected in the system, as well as the user details and other

settings.

5

Screens:

1) Login screen

2) Reset password

3) Sign up

4) Guides

5) Daily missions

6) Task page

7) Mission's history

8) Admin users management

9) User's information(location, role, company, etc.)

6

Server side:

1) API :

a) Administrator – add/update/delete/get/search users

b) Manager – upload/ delete/download/Edit guides

c) Manager – add/update/delete/get/search missions

d) Manager – add/update/delete/get/search tasks

e) Maintenance – comment, add photo, get task, mark task status

f) User - login/get user settings/download guides

2) Using express middleware

3) Connection to PostgresSQL DB on GCP SQL instance

4) Using routes and controllers

5) Using buckets in GCP to upload and download files and images

7

Server architecture:

8

3. Screen's details:

a) Login screen:

Each user will enter the user information generated for him, a password and a

company ID.

9

b) Home screen:

The homepage changes according to the type of user (there are 3 types of

users):

Maintenance man: screens of Emergency & Daily missions, sub-missions,

locations on the map, visit history and guides will appear.

Manager: In addition to the other screens mentioned above, manager will

have screens that show the availability of various maintenance personal will

appear, as well as the option to edit various guides.

Administrator: In addition to the other screens mentioned above, user

management screens will appear (can add users/ update users and their

permissions/ delete users).

10

c) Admin screen:

The admin page is used only by administrators, and it includes list of all

users and their roles. In this page the administrator can add/update/delete

any user.

11

d) Guides screen:

 The guides screen includes different guides detailing the procedures for

different tasks. The maintenance person will be able to view the manuals

without being able to edit or delete them. The administrators will be able to

edit the guides as needed and add new ones to the bucket on the GCP. Also,

clicking on the guide will take you to the guide page where the general

details of the guide and a PDF or WORD file will usually be displayed.

12

e) Missions & tasks:

The missions page contains list of missions that needs to be completed and

filled in by the maintenance man. Each mission includes all the necessary

details, the sub-tasks, location on map and the history about the place.

13

14

4. Methodologies :

a) Front

React is a JAVASCRIPT based library, used to build various WEB systems. Its

flexibility and the convenience of working with it and building an internet

system for mobile and different types of computers are the features that led

us to choose this FRAMEWORK as opposed to others.

b) Backend

We chose Node.js technology following the decision to choose the React

FRAMEWORK, and build a powerful and flexible server side quickly. The tool

allows you to build different routers and controllers in a quick and convenient

way.

We will use Express - backend framework for node.js. It is a middleware that is

very convenient to work with in order to create various REST API requests

with the server.

15

c) Development

language:

Backend: The system will be developed in the Node.js development language

Frontend: HTML, CSS, JS-React.

d) Version Control

Working with GitHub.

e) Data Base

Working with Postgres - an excellent tool for building SQL schemas that will

serve us when using the coordinates and the API used to integrate the map.

Also, SQL tables are a very convenient way to create permissions and user

details, and also tables containing the tasks will make their management

easier.

16

5. Platforms:

Development environment:

The system will be developed in the Visual Studio Code development

environment. The environment supports debugging, Git view control,

syntactic illustration of code fragments, intelligent code completion, and

lateral code changes.

We also use docker, docker-compose for uploading images in development

and also use them on the GCP.

For working with PostgreSQL tables we use pgAdmin.

Deployment environment:

The system will be deployed on GCP (Google Cloud Platform).

GCP is a powerful environment that includes the following things:

1) Container registry - upload docker images.

2) Buckets – cloud storage for uploading and downloading files

3) Secret manager – handling configuration (environment variables and

secret files)

4) VPC – configure networks on cloud

5) SQL instances – provides environment to create databases in different

types (we used PostgreSQL).

And many more features.

17

6. Database Structure :

Users:

Guides:

18

Missions:

Tasks:

19

Location:

7. Flowchart :

